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Exercice 1 

La forme faible approchée s’écrit 
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où Th et δTh sont les températures approchées réelle et virtuelle et où U h et V h sont les sous-
espaces respectifs de U et V. 
Dans la méthode de Galerkin, les approximations Th et δTh sont choisies sous les formes d’or-
dre n suivantes 
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dans lesquelles les grandeurs hi(x) sont les fonctions de forme et les variables αi et δαi sont les 
inconnues discrètes réelles et virtuelles. En portant ces approximations dans la forme faible 
approchée, on obtient le système ci-après de n équations à n inconnues 
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où les composantes kij de la matrice de conductibilité thermique et les éléments ri du vecteur 
des sources d’énergie-chaleur s’écrivent 
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En choisissant une approximation polynomiale à un paramètre 
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la matrice de conductibilité thermique et le vecteur des sources se ramènent à des scalaires 
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Le coefficient α1 et la température approchée valent alors 
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Avec une approximation polynomiale à deux paramètres 
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on trouve de manière analogue 

)3(/d)/dd( 2
11 10




κκ == ∫ xxhk  

)6(/d)/dd)(/dd( 212112 0



κκ === ∫ xxhxhkk  

)15(/2d)/dd( 2
22 20




κκ == ∫ xxhk

12/d11
/2

0



qxqhr == ∫  

192/5d22
/2

0



qxqhr == ∫  

Le système d’équations a alors pour expression 
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dont les solutions valent 
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et la température approchée s’écrit 
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Les graphes de la solution exacte (non calculée ici) et des deux approximations sont donnés à 
la figure ci-dessous. 
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Exercice 2 

La forme intégrale du problème a pour expression 
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dans laquelle δu dénote le déplacement transversal virtuel. 
Une première intégration par parties donne 
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Compte tenu des deux conditions de bord essentielles dont les contreparties virtuelles sont 
cinématiquement admissibles 
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la forme intégrale devient 
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Par une seconde intégration par parties appliquée uniquement au terme en dérivée tierce, on a 
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En vertu des deux conditions aux limites naturelles, cette expression se simplifie en 
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La formulation faible du problème revient ainsi à rechercher 
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où les classes de fonctions U et V s’écrivent 
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Pour la méthode de Galerkin, l’approximation polynomiale de plus faible degré est de type 
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où α, β et γ sont des coefficients. Comme, conformément à la classe de fonctions U, le dépla-
cement approché uh doit satisfaire les conditions aux limites essentielles, l’approximation 
prend l’allure suivante 
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dans laquelle h1 = x(x – ) est la fonction de forme et α1 le coefficient associé. Les dérivées de 
l’unique fonction de forme valent 
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En portant ces égalités dans la forme faible approchée 



SGM5 – Méthode des éléments finis  Corrigé 2 - 2021  

4 

uh ∈ U h ⊂ U  :  0d)]/dd)(/dd()/dd)(/dd([ 2222

0
=−∫ xxuxuNxuxuEI hhhh δδ



huδ∀  ∈ V h ⊂ V 

où δuh = δα1 h1 est le déplacement transversal virtuel approché, on obtient 
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La résolution de l’intégrale conduit à la charge critique suivante 
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soit une erreur de –9,3% sur la demi-longueur d’onde. 


